محتويات
النسبة المئوية
تعبر النسبة المئوية في علم الرياضيات عن كسر أو نسبة عدد من العدد مئة، ويُرمز لها بالرمر "%"، فعند القول أن الطالب عندما يحصل على علامة 86 من 100، فإن العدد 100 هو الدرجة النهائية، وبالتالي تكون النسبة المئوية للطالب 86%؛ أي أن مقام الكسر في النسبة المئوية هو العدد 100، والبسط هو أجزاء من مئة، وبالتالي فالنسبة المئوية هي إما كسور عادية أو كسور عشرية، فمن الممكن كتابة 86% على شكل 0.86 في الكسور العشرية؛ إذ يكثر استخدام النسبة المئوية في حياتنا اليومية، كحساب الفوائد البنكية وحساب الضريبة من صافي الأرباح والدخل والأسعار بمختلف أنواعها، وكذلك نتائج الدراسات العلمية، والنسب المئوية تدخل في حساباتها بكثرة، وأيضًا تدخل النسب المئوية في عالم الرياضة والألعاب، فتُحسب مواقف اللاعبين ومعدلات إصابتهم على النسب المئوية، وفي المتاجر والمولات ومراكز التسوق تُحسب معدلات الخصم على نسب مئوية من الأسعار المطروحة، وقد استخدم الرومان مصطلح "في المائة" منذ قرون، وكذلك استخدمها التجار فترة العصور الوسطى قبل اختراع النظام العشري للأعداد، فكانت تُلفط مثلًا 33 بالمائة، بدلا من 33%. [١]
قانون النسبة المئوية واستخداماته
يُطبق قانون النسبة المئوية في الكثير من مجالات الحياة اليومية المتعلقة بالحسابات، لا سيما الفائدة على القروض وما يترتب عليها من فوائد مركبة، وكذلك في جميع التطبيقات البنكية من عمولات وخصومات، فقانون النسبة المئوية هو في الواقع قانون بسيط، ويمكن الحصول على أكثر من نتيجة بهذا القانون، وهي كالآتي : [٢]
- حساب النسبة المئوية : تُحسب النسبة المئوية لعدد من عدد آخر، وكمثال عند حساب العدد 20 كنسبة مئوية من العدد 200، فإننا نتبع معادلة : النسبة المئوية = العدد المطلوب حساب النسبة المئوية له ÷ العدد الكلي، والناتج يُضرب في 100، فالحال يكون (20.÷200) × 100، أي 0.1 × 100= 10، أي أن نسبة 20 إلى 200 بالمئة يساوي 10%، وبمعنى آخر العدد 20 يشكل 10% من العدد 200، وفيما يلي مثال تطبيقي آخر: صف دراسي به 40 تلميذًا، والمطلوب حساب النسب المئوية لتفضيلات الطلاب الرياضية، والتي جاءت على النحو الآتي : 15 تلميذًا يفضلون كرة القدم، و 5 تلاميذ يفضلون كرة الطائرة، و10 تلاميذ يفضلون كرة اليد؛ فالحل يكون باستخدام القانون سابق الذكر؛ فالنسبة المئوية الخاصة بمن يفضلون كرة القدم هي : (15÷40)×100= 37.5%، والنسبة المئوية الخاصة بمن يفضلون كرة السلة = (5÷40)×100= 12.5%، أما من يفضلون كرة اليد فنسبتهم المئوية = (10÷40)×100= 25%.
- معرفة مجهول عددي بقانون النسبة المئوية: يمكن باستخدام قانون النسبة المئوية في معرفة عدد مجهول إذا توفرت بقية المعطيات في القانون، فمثلًا إذا كان العدد 9 يساوي 25%، فما هو العدد الأصلي الذي أُخذت منه النسبة المئوية، فالحل يكون اولًا بتحويل النسبة المئوية لنظام الكسور العادية أو العشرية، وهي في مثالنا 25% تصبح 0.25 أو (100/25)، فنضعها في قانون النسبة المئوية (9 ÷ العدد المجهول) = 0.25، فتصبح المعادلة : (9 ÷ العدد المجهول) = 25÷100، وفي هذه المعادلة سنضطر لاستخدام ما يُسمى بالمعكوس الضربي، وبالتالي ستصبح المعادلة ( 9× 100)= العدد المجهول × 25، أي 900 = العدد المجهول × 25، وبقسمة طرفي المعادلة على العدد 25 للتخلص من العدد 25 المضروب في العدد المجهول سيكون الناتج 36، وهي قسمة 900÷25 =36، أي أن الـ 25% من العدد 36 يساوي 9.
- معرفة النسبة المئوية من عدد : مثال: مع محمد مبلغ 38,000 دينار أردني، وأراد أن يشتري ماكينة قيمتها 33% من مجمل المبلغ الذي يمتلكه؛ فالحل أيضًا وضعها في قانون النسبة المئوية، 38.000 × 33 / 100، أي (38,000 × 33)÷100= 12,540.
تطبيقات عملية على حساب النسبة المئوية
يطبق الناس عمومًا النسبة المئوية في حياتهم عند دخولهم المحال التجارية، وعند إبرام العقود مع المصارف بمختلف أنواعها، وكذلك في حساب نسبة العمولات الخاصة بعقود البيع والشراء، وفي الخصومات الممنوحة من قبل الشركات الخدماتية والسلعية، وفيما يأتي أهم هذه التطبيقات مرفقة بالأمثلة للتوضيح: [٣]
- حساب الخصومات : يُحسب مبلغ الخصم الممنوح من خلال قانون النسبة المئوية، فمثلًا عند دخول مول تجاري يضع إعلانًا بمنح خصم على الأدوات المنزلية التي اشتريت، فإذا كان مجموع المشتريات يتعدى المئة دولار، فإن الزبون يحصل على خصم بنسبة مئوية هي 15%، فلنفرض أن أحمد اشترى بمبلغ 250 دولارًا، فما هو المبلغ المطلوب منه للدفع، فالحل يكون باستخدام قانون النسبة المئوية، أي أن (250 × 100/15) = 37.5 دولار، أي أن أحمد سيدفع بدلًا من 250 دولار (250 -37.5) = 212.5 دولارًا.
- حساب نسبة الفائدة : تُستخدم هذه النسبة في عمليات الإقراض التي تجريها البنوك مع الزبائن، أو العكس عندما يمنح البنك نسبة فائدة على الأموال التي يودعها الزبائن في البنوك، إذ يكون أحد وجوه ربح البنك هو الفرق بينهما، فمثلًا يعطي البنك نسبة 0.5% فائدة على الأموال المودعة لديه من الزبائن في كل عام يكون المبلغ فيه في البنك، ففي بداية السنة الأولى يكون مبلغ 1000 دينار مودع لدى البنك هو 1050 دينار في بداية السنة التي تليها، أي أننا حسبنا المبلغ الأخير باستخدام قانون النسبة المئوية، وهو 1050 دينار = 1000 × 100/5، والذي يساوي 50 دينار، فأصبح المبلغ المتوفر لدى الزبون في البنك بعد سنة يساوي (1000+50) أو 1050.
- حساب العمولة : يستخدم هذا الحساب في حصول بعض الأشخاص على نسب عمولة تُمنح لهم، فمن يحصل الديون من الزبائن يمنح نسبة على المبلغ الذي حصلوه، ومن يبيع منتجًا تابعًا لشركة، فإنه يُمنح نسبة من مجموع المبيعات الشهرية، وهكذا، فمثلًا الموظف الذي يحصل ديون شركة ما سُيمنح عمولة مقدارها 4.5% من مجموع المبلغ، فمثلًا استطاع شخص أن يحصل مبلغ مليون دينار لشركة اتصالات رائدة؛ فإن المبلغ المالي المستحق له سيكون : 1,000,000 × 100/4.5 = 45,000 دنيار.
المراجع
- ↑ "كيفية حساب النسبة المئوية"، basyta، اطّلع عليه بتاريخ 6-7-2019. بتصرّف.
- ↑ "طريقة حساب النسبة المئوية"، almrsal، اطّلع عليه بتاريخ 6-7-2019. بتصرّف.
- ↑ فراس أشرم (12-1-2019)، "تعلم كيفية حساب النسبة المئوية بطريقة سهلة وبخطوات واضحة!"، kammasheh، اطّلع عليه بتاريخ 6-7-2019. بتصرّف.